chief discrepancy between atomic weights determined by physicochemical methods and those obtained from mass-spectrographic data.

We expect to continue work on this problem.

Coolidge Memorial Laboratory Harvard University		G. P. Baxter J. S. Thomas
CAMBRIDGE, MASSACHUSETTS		
Received January 18, 1933	PUBLISHED FEBRUARY 9,	1933

THE HABER-WILLSTÄTTER CHAIN MECHANISM OF ORGANIC AND ENZYMATIC PROCESSES

Sir:

Haber and Willstätter [Ber., 64, 2844 (1931)] have proposed chain mechanisms for a number of organic and enzymotic processes of which we may cite the oxidation of alcohol as typical. Their reaction scheme is

$$CH_{3}CH_{3}OH + Enzyme = CH_{3}CH(OH) + Mono desoxy-enzyme + H^{\cdot} (a)$$
$$CH_{3}CHOH + CH_{3}CH_{2}OH + O_{2} = 2CH_{3}CHO + H_{2}O + OH (b)$$

$$OH + CH_3CH_2OH = CH_3\acute{C}HOH + H_2O$$
(c)

A similar chain can be set up for aldehyde oxidation. We have attempted to verify such a mechanism, starting the chain of processes at stage (c) by decomposing hydrogen peroxide photochemically in mixtures of alcohol and oxygen suitably agitated. We find that the photo-decomposition of peroxide markedly sensitizes the interaction of alcohol and oxygen. The oxidation process is a chain reaction, sensitive to inhibitors but the chain length is short. It is much shorter than the assumed chain length ($\sim 10^5$) in the communication of Haber and Willstätter. Dilute aqueous aldehyde solutions behave similarly and the chain length is somewhat longer. The detailed results will be communicated immediately.

Department of Chemistry Princeton University Princeton, N. J.	Hugh S. Taylor Austin J. Gould
Received January 20, 1933	PUBLISHED FEBRUARY 9, 1933

ORIENTATION IN THE FURAN NUCLEUS

Sir:

The introduction of an aldehydic group into 3-methylfuran, by means of hydrogen cyanide and hydrogen chloride, results in the formation of 3-methyl-2-furfural [Reichstein, Zschokke and Goerg, *Helv. Chim. Acta*, **14**, 1277 (1931)]. The nitro- β -methylfuran obtained from 3-methylfuran by the action of fuming nitric acid in acetic anhydride has been shown to be 3-methyl-2-nitrofuran [Rinkes, *Rec. trav. chim.*, **49**, 1125 (1930)] by comparison with an authentic specimen kindly provided by Dr. I. J. Rinkes.